From the day I began working as a science writer (starting as a “hobby” while I was a gainfully employed optical systems research engineer) I’ve covered new breakthroughs — discoveries or inventions that have revealed or used new principles or techniques. The challenge of covering that “beat” is that the mere fact that a discovery or invention has been made says absolutely nothing about the use or application of the advance. So there’s a bit of a disconnect between news of technological or scientific progress and the availability of the fruits of that progress to a wider community. But there is a definite process that these things tend to follow: initial work–>use by a handful of specialized practitioners–>availability of the method to a technically capable general population–>accessibility to all. Of course, not all breakthroughs make it through all these stages, and one of the most fascinating aspects of following science and technology is to predict which ones will hit the big time.
Applying that model to the development of general lighting with LEDs, the first breakthrough was simply crashing through the performance, cost, and reliability (i.e., quality assurance and product validation) barriers to bring solid state lighting to market. Any walk through a big box hardware store will demonstrate that basic LED technology is now in the fourth stage of development.

Controls Adding Value

The subsequent stage is to realize even more value from LED lighting by incorporating it into an overall control system, i.e., Smart Lighting. I’d say that’s at the third stage (perhaps on the cusp of the fourth), where folks who are generally capable around technology can now incorporate advanced controls into their lighting systems. Proving the point are commercially available systems such as the Hue system from Philips bringing those capabilities to the general consumer, and companies like Redwood Systems, that offer integrated controls solutions to commercial and industrial customers.

Image of LED lights controlled by smartphone app.

Philips’ Hue system brings LED lighting control within grasp of the tech savvy. (Courtesy of Philips Communications)


Although the market penetration for LED lighting in general is still proportionally very small compared to the overall industry, that’s now a marketing challenge more than a technical one. The next wave in LED lighting is to start to apply the inherent controllability of solid state lighting to use light to define spaces and optimize suitability of illumination for any circumstance. Specifically, LEDs offer an unprecedented degree of control over the distribution, spectrum, and intensity of light in a space — including the ability to vary those parameters over time.
At the Strategies in Light Conference, Hans Nikol, VP for Strategy and Innovation at Philips Lighting, discussed how a significant percentage of the market for the Hue LED lighting system is driven by teenagers — looking to show off the cool lighting at their homespun raves (if anyone uses that word any more). But that’s not the kind of value that’s going to drive widespread adoption of solid state lighting. What’s needed is a way to identify specific benefits of lighting control — aspects of illumination that improve human health, productivity, or perhaps even some more nebulous sense of well-being.

Quantifying the Promise of LED Lighting

Lighting Research Center's Home Lighting Design Tool

Knowledge of the effects of light can help produce illumination designs that influence behavior and health. (Image courtesy of RPI’s Lighting Research Center)


Also at Strategies in Light, Mark Rea, Director of the Lighting Research Center at Rensselaer Polytechnic Institute, spoke about various ways to quantify the value added by the ability to spectrally and temporally tune illumination. He is pushing the industry to help identify quantifiable metrics that can be applied to commercial, industrial, educational, and domestic environments to present a clear story of the value of controlled illumination in those environments. Of course, identifying a metric is different from establishing the connection of that metric to human health and performance. That work is in its early stages, with the exception of a few tantalizing tidbits. But enough work has been done to understand that human well-being, alertness, and productivity are influenced by lighting choices. Although some may quibble, I’d contend that this field is still at the stage where researchers are making their fundamental discoveries, and significant expertise is necessary to investigate and apply these illumination methods. It’s also my contention that herein lies the true value of solid state lighting. Without the ability to control illumination, it didn’t make much sense (and was difficult to do anyway) to investigate the effects of various illumination levels, colors, and timing. Now those investigations are underway, and the results should drive the value of LED lighting well beyond that of simply upgrading incandescent light bulbs.

Share